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ABSTRACT 

This article contains the new orbital elements and the 
table of the general perturbations of the Xth satellite of 
Jupiter. 

A modification of Hansen's theory suggested by Musen 
was the theoretical foundation for the programming and for 
the expansion of Hansen's coordinates of the satellite into 
trigonometric series in four basic arguments. The com- 
plete collection of formulas is given in the exposition. Also 
described are  the program and the operations for handling 
the expansions and for integrating the differential equations 
of the theory by means of iteration. This program was de- 
veloped and the actual numerical computations were per- 
formed by Charnow and Maury. The new set of elements 
represents the observations in the interval 1938-1967 better 
than the previous sets. The residuals a re  now of the order 
of only a few seconds of arc. Several secondorder effects- 
for example, the planetary perturbations and the effect of 
the variability of the orbital elements of Jupiter-will be 
treated by the subsequent work. 
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APPLICATION OF HANSEN'S METHOD 
TO THE Xth SATELLITE OF JUPITER 

by 
Peter Musen and Jesse L. Maury 

Goddard Space Flight Center 

and 

Milton Charnow 
Computer Sciences Cmporation 

INTRODUCTION 

We have accumulated the observations of the Xth  satellite of Jupiter published over an inter- 
val of 29 years. With this observational material, an attempt can now be made to develop a better 
theory and a better system of mean orbital elements. 

The Xth  satellite of Jupiter was discovered in 1938 by Seth Nicholson at the Mount Wilson 
Observatory. It belongs to the group of outer satellites of Jupiter whose motion is affected pre- 
dominantly by solar perturbations but also, to some extent, by the disturbing action of Saturn. The 
satellite is very weak visually: of 19& stellar magnitude. Its orbital inclination toward the or- 
bital plane of Jupiter is large, about 27". Thus the development of an analytical theory for this 
satellite is not an easy problem. Soon after the discovery, two preliminary orbits were computed: 
one by Wilson (1939) without taking into account the solar perturbations, and one by Herget (UAI) 
Circ. 727) using a modified Laplacian method. Herget included the solar effect in the computa- 
tions from the very start, and thus his preliminary orbit is a better one. Herget (1947) also sug- 
gested a modification of Encke's device to compute the perturbed rectangular coordinates of the 
satellite. Using this method Herget, up to 1943, and later Musen produced the geocentric ephem- 
erides of the Xth  satellite. 

A preliminary orbit correction obtained by Musen at Cincinnati was used by Herget as a foun- 
dation for the numerical integration of the differential equations of motion of this satellite. Within 
two years after the completion of the numerical integration, Musen found that his corrected ele- 
ments were not accurate enough. This might be explained by the mutual influence between the 
correction of elements and the perturbative effects. That influence could not be investigated then, 
because of lack of technical means. The possibility of such investigation exists now and enables 
us  to obtain better elements as well as better general perturbations. 

Lemekhova (1961) has applied the theory of Delaunay (1860, 1867) to the motion of Jupiter X 
and obtained a corrected set of elements using observations from 1938 to 1942. She reduced these 
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observations to 14 normal places. The largest residuals after her orbit correction still remain 
36" in right ascension and 24" in declination. 

The theory of Delaunay was used by Lemekhova because it was the only analytical lunar theory 
extensively developed. One must bear in mind, however, that Delaunay had in view the application 
of his theory to the moon and not to the satellites of Jupiter. For this reason, he did not include 
the higher powers of the inclination in his expansions. It is questionable whether his theory can 
be applied uncritically to a satellite with the high orbital inclination of Jupiter X. In order for the 
theory of Delaunay to be applied to Jupiter X too, it must be extended several orders higher. This 
is a formidable task that has been undertaken by several groups, but not yet completed. So far no 
extension of the theory of Delaunay exists that would enable us to obtain an accurate representa- 
tion of observations of such satellites as Jupiter X. The authors, however, have no doubt that in 
the future such an extension will become a reality. 

The work of Lemekhova still retains much of its importance because it permits us to form an 
idea of the relative importance of terms with different arguments. During Musen's stay in Cin- 
cinnati, Herget called his attention to the fact that the lunar theory of Hansen (1862) can be applied 
to obtain the expansion of the solar perturbations of the outer satellites of Jupiter. Since then 
several possible modifications of Hansen's theory have been developed by Musen (1963, 1965) at  
Goddard Space Flight Center in a form adaptable to the use of electronic machines. One of those 
modifications (1963) is being utilized in this work. The programming and the numerical computa- 
tions were performed by M. Charnow (1966) and Jesse Maury. 

Hansen's lunar theory can be applied to the cases of high inclination. It is also usable for 
obtaining the expansions of perturbations up to any degree of accuracy compatible with the ac- 
curacy of observations. These expansions a re  obtained in the form of trigonometric series with 
purely numerical coefficients, and this makes the programming easier. So far this is the only 
theory which permits relatively rapid calculations. Some numerical inaccuracies do exist in 
Hansen's theory of the moon. However, his basic theoretical idea is correct and can be applied to 
satellites on which solar effects strongly dominate and for which several small non-gravitational 
effects, important in the lunar theory, can be neglected in the computation of yearly ephemerides. 
The intermediary orbit of Hansen's theory is a rotating ellipse of fixed shape. The use of the var- 
iational solution (Hill, 1878) is essential only when a literal development in powers of the constants 
of the eccentricities and of the inclination is being pursued (Brown, 1897-1908). The variational 
part of the theory for the satellites is not necessarily the most significant part numerically. The 
largest amplitude normally is associated with the evection and contains the eccentricity of the sat- 
ellite orbit as a factor. Thus, from the numerical point of view, the use of the mean rotating 
ellipse as an intermediary represents a natural start. 

The appearance of squares of small divisors in the process of double integration presents 
considerable difficulty in every lunar theory. In Hansen's theory, the squares of small divisors 
are  associated with the long period terms in the perturbations of the mean anomaly and with the 
element El .  The amplitudes of these terms are  small. In the process of iteration they are  obtained 
as a ratio of two small numbers. Thus a loss of accuracy is inevitable. Every lunar theory has a 
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special procedure for handling these terms. Here we made use of Hansen's transformation (1862) 
of the element E. The expression for this element is written by Hansen in such a manner that the 
terms to be integrated twice contain small factors. The presence of these factors diminishes the 
influence of division by the mean motion of long period arguments in the double integration. 

After the programming had been completed, we applied several checks to test its correctness. 
The expansion of the disturbing function pertaining to the first cycle of integration must coincide 
with that obtained by Delaunay when the numerical values of the eccentricities and of the inclina- 
tion (both constants) are  substituted. We found that the agreement was very good and was always 
in accord with the accepted numerical accuracy. The process of iteration was checked by the 
partial reproductions of Hansen's lunar theory. The final output of the theory comprises the 
Fourier expansions of the Hansen coordinates and of the Euler parameters of the satellite. Their 
accuracy as given here is quite sufficient to produce a good ephemeris of the Xth  satellite. 

Using Lemekhova's elements and our expansions of perturbations, M. Charnow and J. Maury 
computed an ephemeris for 1967. The satellite was found by E. Roemer in very close proximity 
to the predicted position. Lemekhova in her work expressed the opinion that some observations 
of Jupiter X still remain unpublished. The authors also hold this not impossible. It would be highly 
desirable that such unpublished observations be made available to the scientific community. 

The orbit correction and the perturbations have now been recomputed using the new observa- 
tions. The present work contains the final results of these computations, the complete set of 
formulas used, and also the comparison with the observations. One can see that the set of new 
elements represents the observations much better than the set of elements with which we started. 

We prefer the general perturbations because they are superior to numerical integration in the 
description of physical characteristics of an oscillatory system. All the theoretical and technical 
difficulties associated with the work on the general theories are compensated for by the gratifying 
results. We obtain an accurate representation of the observations, an accurate prediction, and 
also an insight into the behavior of the orbit over a long interval of time. 

Work on the general theories of motion of bodies in the solar system must proceed because 
flights to the planets and to their satellites will become a reality in the future. Some day we will  
have artificial planetary satellites too. The numerical and theoretical techniques must be ready 
to meet these new challenges. 

COLLECTION OF FORMULAS 

The notations used in this work a re  the same as in Musen's previous theory (1963). 

A Bessel-function routine is employed to generate the numerical coefficients of the input 
series (p /a ,  ) COS 6 through a'/r' .  These series have literal arguments. The major iterative loop 
begins with the calculation of the si series. The disturbing function is generated from the s and 
the p series. When the series representing the dY/dt, dX,/dt, and dA,/dt functions have been 
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formed, the values of no Y ,  no a ,  and no 7 are  determined by imposing the condition that the series 
representing those functions must contain no constant terms. 

The values no y ,  no a ,  no 7, and no y '  relate to the motion of the lunar perigee, lunar node, 
and solar perigee. The series 

[?] [TI , [Y l  , [ A , ]  . ( i  = 1, 2,  3, 4) 

are  obtained by formal integration. The no Sz series is computed from the dn, Fz/dt series after 
c1 and c2 have been calculated, so that no S Z  contains neither constant nor s i n  g terms. 

The no 6 z  series has been computed; now the 

are  constructed for final output or for use in the next iteration. They are  complete when the values 
of no y ,  no  a ,  and no  q have converged. 

Input Information: 

g,,', a ' ,  e ' ,  n ' ,  i ' ,  n' 

Basic Arguments: 

g = go + n o t  3 g'  = go' + no' t , 

w' = I a, + no ( a + T + y ' )  t 

The following standard formulas of the elliptic motion are  used; however, if preferred, Cayley's 
Tables or the harmonic analysis can be used instead. 

p= 1 

4 



I 

s = t ( A , 2 - A : ) s l  - 2A1A2s ,  t ( A 4 2 - h ; ) ~ ~  - 2A,A,s, ; 

= ( l t U )  P a '  
r '  
- - 

- -  a s  - - t A ,  s 1  - A, s ,  = al , 
2 a x ,  

1 a s  - 

2 ax,  

1 a s  - 

2 ax, 

2 '  - A, s1 - A 1 s 2  = cr -- - 

- A, s3 - A, S ,  = 0, , - -  - 

- t X, s j  - A, s, = U, ; 
1 as -__ - 
2 ax, 
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no a. eo s i n 4  
N3 = - - . - . - I  1-e: a. i q  

m' a 2  a '  
a r 3  r '  

= - . - -  (; s 2 -  ; P2) 7 

m' a3 
a ' 4  r '  

a '  . (; s 3  - - 3 0 2  = - - -  2 SP2) 9 

m '  a4  a '  
a ' 5  r '  O3 = - * - .  

. . . ................................................ 
n = n, + n2 + n, + . * a  ' 

m, + m2 + 40, + JQ - 
p a p  - ' 

- 
l + v . p . 7 . s  a r '  d n  - - f - . - .  m' a2  a '  3st-.-.(ys2-- m' a3 a '  1 3 2 ) + - . - .  m' a4  a '  35 15 

(T s 3 -  sp2) + ... 3 a ' 3  r '  a I4  r '  2 p a , 5  r l  

6 



( i  = 1, 2, 3) ; 
aa dfl 

Ti = Mi f i  + Ni - p a p  

- dT = + n o y Y  + F, , 
d t  

d ho - 
d t  h - =3 ; 
_ -  

- no d, + H, , 
a, - =  d t  
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Designating by 

[2] [TI , [Yl , [ A , ]  (i = 1, 2,  3, 4) 

the series obtained by formal integration, we have 

Y = [Yl , 

c o s $  , 
( n o  s z ) n  d" p 

n 

(no ")" dn sin& , 
- dg" - 

- - 

(G-sinf) - (< sin$) = c ~ n! 
n 

- 
- P  

sin f - - s i n &  
a0 

"0 Y p 2  
+ B = A, + A, c o s g  + - 1 .  ' 

- 
P - 3  
- c o s p  + 2 e o  = p c o s g  + ; 
a0 
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h = I + C , + [ ~ ]  = l t A ,  

v = $ (A-W) ; 

1 1 
A, + 2~(cos I, +sin 1,) t (11) = o , 

1 1 
BZ - 2B(cos  2 I ,  - sin 2 I,) + ( 1 2 )  = 0 , 

where 

( 1 1 )  = constant term in {( [ A,]  + [A,]), + ([A,] - [A3]) ‘} ’ 

( 1 2 )  = constant term in {([A,] - [A, ] )2  + ([A,,] + [A,])’} ; 

1 1 
A, = sin 2 I, + ij ( A + B )  + [ A , ]  , 

A, = [ % I  ’ 

‘3 = [‘SI 9 

1 1 
A, = cos 7 I, t 3 ( A - B )  + [A,] . 
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DETERMINATION OF THE LONG-PERIOD EFFECTS 

The terms containing the short period arguments g or  g '  can be handled by the process of 
iteration easily. The difficulty arises, for reasons explained in the Introduction, when we want to 
determine the long period terms in the perturbations of the mean anomaly, among which the term 
with the argument 2w is the most important. For the computation of these terms, a special pro- 
cedure is necessary. The most significant long period terms in the perturbations of the mean 
anomaly are transferred into no 6z through the element 8. An additional integration is performed. 
Consequently, we need a form of E! split into two parts. The first part will be affected by a single 
integration only. The second part, which will  be affected by a double integration, will  contain 
small factors which will diminish the effect of division by the mean motion of the long period ar- 
guments. We are  here using, without modification, Hansen's formulas given on page 374 of the 
Darlegung (Hansen, 1862): 

+;[(e -+.](e - 1 )  + 8 3 ( l - e , 2 ) ( P + Y 2 )  + z , 

c o s 1  = 1 - 2X: - f i z  2 '  

- 6 ($)' e '  i- (2 cos I + k) ($)3 sin f '  , 

The series 

can be taken from the previous iteration. 

At each iteration step we shall use these formulas only for the purpose of determining the 
long period terms. In this case we can disregard the constant of integration k. 
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COMPUTATION OF THE COORDINATES AND VELOCITIES 

After the process of iteration has been completed, we determine the components of the satel- 
lite position and velocity vectors from the following system of formulas: 

A, ( a )  = + s i n a  Ka 

0 

+ cos a 

+ s i n a  

- s i n a  

+ cos  a 

0 

- s i n a  

+ cos ' 1  a 

0 -  

0 

+ 1. 

Let the Gibbsian vectors of Jupiter's orbit be 

The components of these vectors and of the satellite position and velocity vectors are  referred to 
the mean equator and equinox 1950.0. 

We have 

X- 

= [;- 
where 

= r  
4 

- _  " - r  
"0 
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A,, = + A ;  - A 2  - A 2  +A:  , 

A,, = - 2 ( A 3 h , + A l A 2 )  I 

f 2 ( A 1  A, - A 2  A,) , 

A,, = f 2(h,  A, - A l  h 2 )  I 

= 
'13 

A,, 
= - A: + A," - A,' + A,' , 

A,, = - ~ ( A , A , + A , A , )  . 
A,, = + ' 2 ( A 1  A, + A 2  A,) , 

= + 2 ( A ,  A, - A 2 A 3 )  7 '32 

The geocentric right ascension and declination and the distance from the earth are  computed from 
the standard formulas 

p c o s  6 c o s a  = x + x' + X , 

p c o s 6 s i n a  = y f y' + Y  I 

p s i n 6  = z + z '  + Z ,  

where x', y', z'  are  the heliocentric coordinates of Jupiter and X, Y, Z the geocentric coordinates 
of the sun. 

ORBIT CORRECTION 
The formulas used for the orbit correction represent a transformation of the Eckert-Brouwer 

method (1937). In this transformation we make use of our expressions for the position and velocity 
vectors in the inertial system. 
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A, = a l ( C s i n w + 7 ) c o s w )  , B, = p, ( C s i n w + q c o s w )  , 

A, = a, ( < c o s w - q s i n w )  , B, = p, (5 cos w - q s i n  w )  , 

A, = a 4 ’  B, = p, 

A, = H a ,  f Ka, , B, = Ha,  + KP, , 

(m) = - 0.02617994 ( 9 -  go)’ 9 

f A, neo = cos 6 A a  , A, AI t A, s i n  IAw‘ t A, AX t A, Ago + A, - 
La0 

B,AI + B, s i n I h ‘  + B3Ax + B,Ago + B - + B,Ae, = A6 , 
5 a0 

Ax = A, + cos I 0 h ‘  . 

PROGRAMMING 

The adaptation of Hansen’s lunar theory as a model has made possible the effective applica- 
tion of digital computing equipment to this problem. Hansen required a qualitative personal judg- 
ment at every step of the development of his long Fourier series. We replace this with a feedback 
controlled iteration which now can be automated. A computer program can be constructed of a 
sequence of relatively short steps: this sequence i s  repeated until we reach the accepted numerical 
accuracy. These short steps are comparatively straightforward to program and easily checked. 

The basic tools of the Hansen lunar theory are  Fourier series with five periodic arguments, 
g, g’ ,  w ,  w ’ ,  and y. Since all needed operations on these series (series multiplication, series ad- 
dition, differentiation, integration, etc.) a re  closed, a set  of computer subroutines to execute these 
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operations can readily be defined. In the technique adopted by the authors, each term of a series 
is composed of two words. The first is the numerical coefficient in the usual floating-point form. 
The second is a "logic" word containing the periodic arguments. This logic word relies on posi- 
tional representation and bias (normalization) around 50. It consists of a base logic word having 
the value +005050505050505050 with the integral multipliers of the periodic arguments introduced 
into it in the order g ,  g', w, w ' ,  y. The coefficient of the argument g can assume any integral value 
between 0 and 99. The coefficients of the four remaining arguments can assume any integral value 
between -49 and +49 normalized by 50. By maintaining all logic words so that the first non-zero 
argument is positive (i.e., A sin (-8) = - A sin (0)  and B cos (-8) = B cos (8) ), it  was possible to use 
the sign of the logic word to denote sine or cosine. This effects a saving in computation time and 
storage space. Cosine is denoted by a positive logic word; sine by a negative word. An example 
is 429329805 sin ( l g  - 2g' + 2 w  - 2 w ' ) ,  the evection term in no S z .  In the computer, this term is 
represented by the numeric, floating-point coefficient +029329805 followed by the logic word 
-014852485050505050. 

The constant term in any series is carried as a coefficient of cos (0): that is, a floating-point 
coefficient followed by the base logic word +005050505050505050. This representation is unique. 
To each series is prefixed a single word denoting the number of terms in the series. The terms 
of a series are arranged in descending order of the absolute value of the numeric coefficients. 

This representation of series was used to program a complete set  of computer subroutines 
for the algebraic manipulation of Fourier series. This package of subroutines can multiply, add, 
subtract, scalar multiply, differentiate, integrate, and evaluate trigonometric series, as well as 
perform several specialized functions such as extracting a specific term with a given argument. 
Series multiplication employs the standard half-angle formulas: addition and subtraction of the 
arguments are  realized through logical addition and subtraction of the logic words (Charnow, 1961): 
all five arguments are handled simultaneously without recourse to breaking apart the logic word. 
In executing any of these operations, all duplication of terms is eliminated (maintaining a positive 
non-zero first argument is an aid in this). An operation on a series or  a binary operation on two 
series is terminated by the exhaustion of terms; or, since the terms of a series appear in descend- 
ing order, it may be terminated on the basis of a numerical criterion applied to the coefficients 
of the resultant series. At the conclusion of any operation which may produce a disordered series, 
the resultant series is ordered by a separate subroutine, the arranger. By the use of these tools, 
algebraic series operations a re  programmed almost as easily as numerical calculations. 

The original version of this program was  written in a pseudo-machine language (Maury, 1964), 
(Gorman, 1964) on the IBM 7090 and 7094. This version was capable of operating on series with 
fifty or fewer terms. Subsequently, versions allowing longer and longer series were developed. 
The goal was to ensure that the computation would be controlled only by numerical criteria and not 
by storage restrictions. To realize this, the program was shifted to the Univac 1107 to take ad- 
vantage of the high-speed, random-access drums. These drums were used as temporary storage 
for series, while the bulk of the computer storage was reserved for two operand registers of 
10,000 words each and a result register of 20,000 words. 
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As the length of the series increased, the time to perform the series operations also increased 
(exponentially in the case of the series multiply operation). To ease the time burden, a number of 
the subroutines were rewritten in machine language and the program was again shifted, this time 
to the Univac 1108. Currently, all the main subroutines including multiplication, addition, sub- 
traction, and the arranger are  in assembly language, while the statements reflecting the lunar 
theory a re  in symbolic language. This version of the program can handle series having up to 
2,500 terms, and 750,000 words of high-speed (4.25 ms access time) drum storage is reserved for 
storing series. The computer storage contains the subroutines, the lunar theory, a small resident 
1/0 monitor, and the 40,000 words comprising the three series registers. 

The application of this program to the Xth  satellite of Jupiter required two hours. The first 
iteration took only 40 seconds, since the perturbations are  zero during this iteration. The second 
iteration required 16 minutes. The third iteration, in which all the perturbations were completely 
represented and the series had just begun to converge, required 26 minutes. Thereafter, the time 
to complete one iteration dropped off markedly, to approximately 13 minutes. Convergence was 
achieved in eight iterations. 

CORRECTED ELEMENTS OF THE Xth SATELLITE 

The initial elements of the motion of Jupiter X are derived from those developed by E. N. 
Lemekhova: 

Epoch: 1938 July 27.3128 = J.D. 2429106.8128 

X Satellite Jupiter 

The elements are  referred to the 
orbital plane of Jupiter 

Mean ecliptic and equinox 1950.0 

go = 216e6928 X' = 329e20254 

n = 1?384557 per day n '  = 0?083091 per day 

a = 0.078345 a.u. a' = 5.202561 8.u. 

e = 0.10739 e' = 0.048398 

wo = 2443381 w' = 273?57223 

wd = 113.5835 n' = 99.92939 

1 = 27.5748 i' = 1.30614 

The system was adjusted for use with a modified Hansen instead of Delaunay theory. 
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Using the initial elements, the Hansen parameters no Y ,  no a ,  and no T were obtained from the 
general perturbation theory: 

no y = 1."64886 per year 

no a = 1.15605 per year 

no 7 )  = 0.06700 per year 

The mean motions of the perigee and node are: 

mean motion of perigee = no (Y - 217) = +1."51486 per year 

mean motion of node = - no (a + T )  = -132305 per  year 

We obtained the following corrections: 

Ago = +3?6449 * 0?0310 

Ax = -3.4020 f 0.0308 

s i n  I&' = -0.1320 & 0.0090 

A I  = +0.0256 * 0.0072 

A e  = +0.00851 * 0.00009 

A d a  = -0.000128 & 0.000001 

The system of the corrected elements is 

Epoch J.D. 2429106.8128 

go = 220:3377 

n = 1."384687 per day 

a = 0.078335 

e = 0.11590 

wo = 241:0835 

wo' = 1133985 

I = 27."6004 

no Y = 1?65492 per year 

no a = 136939 per year 

no ri = 0."06831 per year 

This set  of elements was obtained through the repeated use of a differential correction pro- 
cedure. The new elements resulted in better agreement between the observed and predicted posi- 
tions of the satellite. 

16 



1 
2 
3 
4 
5 
7 
8 

10 
11 
12 
13 
1 4  
15 

16 
17  
18 
19 
20 
21  

24 
25 
26 
27 
28 
29 

30 

31 
32 
33 
34 

35 
36 

37 
38 

50 
51  

52 
53 
54 
55 

UT 

1938 July 

Aug . 
Oct; 

Nov . 
1939 July 

Aug . 
Oct . 
Dec. 

1940 Sept. 

Oct. 

Nov . 

1941 Dec. 

1942 Feb. 

Nov . 

1943 Jan. 

1951 Sept. 

1958 Apr.  

1967 Jan. 

Feb. 

6d3743 
6.4667 
9.4229 
9.4521 

27.3361 
28.31 74 
29.466 7 
24.416 7 
25.2129 
18.1285 
20.1257 
23.1319 
21.1188 

15.4205 
15.4528 
16.4365 
16.4806 

8.3998 
15.0885 

8.3736 
8.4438 

25.3488 
25.3731 

1.2160 
1.4181 

23.2569 

17.2342 
18.2618 

8.4951 
9.5090 

6.2400 
6.3230 

30.29101 
30.30663 

25.30100 
25.3688 7 

7.31247 
7.38122 

11.17166 
11.25846 

The Representation of Observations 

Observed 

Used. 

0 - c  

a (1950.0) 

22h17"'15'21 
22 17  13.69 
22 16 22.89 
22 16 22.38 
22 09 13.67 
22 08 45.05 
22 08 10.91 
21 54 07.40 
21 53 41.88 
21  39 13.15 
21  39 25.45 
21 39 50.17 
21 49 30.06 

0 31  26.11 
0 31 26.49 
0 33 47.03 
0 33 46.72 
0 15 53.39 
0 0 1  26.93 

2 57 26.16 
2 57 25.74 
2 38 37.74 
2 38 36.88 
2 34 23.98 
2 34 16.35 

4 56 06.78 

4 44 28.41 
4 44 36.92 
7 53 12.49 
7 53 17.86 

7 32 51.54 
7 32 48.03 

0 39 41.51 
0 39 41.08 

13 34 27.90 
13 34 26.09 

8 17  49.28 
8 17  47.19 
7 57 31.87 
7 57 28.83 

6 (1950.0) 

-1 l"13 ' 32'!3 
-11 1 3  41.6 
-11 18 23.4 
-11 1 8  26.0 
-12 00 14.9 
-12 03 06.3 
-12 06 30.2 
-13 33 16.2 
-13 36 00.3 
-15 25 53.6 
-15 25 54.0 
-15 25 15.1 
-14 41 12.0 

+ 1 3 6  35.3 
+ 1 3 6  36.4 
+ 1 3 3  14.1 
+ 1 3 3  11.8 
+ 0 00 48.7 
- 0 48 17.8 

+16 02 05.9 
+16 02 03.0 
114 14 20.0 
+14 14 15.2 
+13 49 17.5 
+13 48 33.3 

+22 24 12.2 

+22 23 09.5 
+22 23 19.4 
+21 30 26.6 
+21 30 12.4 

+21 57 36.7 
+21 57 40.5 

+ 2 1 7  48.3 
+ 2 17  47.1 

- 7 4 1  04.4 
- 7 40 53.6 

+20 23 30.2 
+20 23 34.4 
+21 06 02.6 
+21 06 08.1 

Aa cos 6 A6 

-1!3 
-0.9 
-1.5 
-0.9 
-0.2 
-0.3 
+0.1 
+2.4 
+3.2 
+0.7 
M.7 
+o .2 
+1.0 

+3.0 
+2.2 
+1.3 
+1 .o 
-0.3 
-2.8 

-0.2 
+0.1 
+o .9 
+1.6 
+o.o 
+o .1 

-1.0 

+0.7 
+2.0 
-0.1 
+o .2 

+6.1 
+5.6 

-1.1 
-1.6 

-2.2 
-1.3 

-0.1 
+1.4 
-6.3 
-7.3 

+2'.'6 
+1.5 
+1.4 
+1.8 
+o .o 
+O .3 
+1.1 
+o .2 
-0.8 
+o .1 
-0.5 
-0 .o 
+o .2 

-0.6 
-0.7 
1-2.6 
+2.4 
+3.3 
-0.6 

-0.1 
-0.6 
-0.7 
-0.3 
-1.0 
-0.6 

+o .2 

-1.1 
-1.5 
-0.4 
-0.6 

+1.1 
+O .5 

-3.8 
-3.3 

-2.0 
-2.3 

+4.2 
+3.3 
+2.7 
+2.9 

Mt. Wilson 
Mt. Wilson 
Mt. Wilson 
Mt. Wilson 
Mt. Wilson 
Mt. Wilson 
Mt. Wilson 
Mt. Wilson 
Mt. Wilson 
Mt. Wilson 
Mt. Wilson 
Mt. Wilson 
Mt. Wilson 

Mt. Wilson 
Mt. Wilson 
Mt. Wilson 
Mt. Wilson 
Mt. Wilson 
Mt. Wilson 

Mt. Wilson 
Mt. Wilson 
Mt. Wilson 
Mt. Wilson 
Mt. Wilson 
Mt. Wilson 

Mt. Wilson 

Mt. Wilson 
Mt. Wilson 
Mt. Wilson 
Mt. Wilson 

Mt. Wilson 
Mt. Wilson 

Mt. Wilson 
Mt. Wilson 

Flagstaff 
Flagstaff 

Tucson 
Tucson 
Tucson 
Tucson 
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CL 
03 

7 1 

U U 
Argument Argument 

no Fz no Zz Argument 
sin cos g g '  w w' cos w w' sin 

g g '  w 0 '  g g '  

0 +O +2 +O +Of113 +0.00094 1 -3 +1 -3 -Of007 +0.00005 2 -4 +3 -3 
0 +1 -3 +1 +O.007 1 -3 +2 -2 +0.213 -0.00170 2 -4 +4 -4 , 
0 +1 -2 +O +0.043 -0.00002 1 1 -3 +3 -3 -0.005 +0.00004 2 -3 +2 -2 
0 +1 -2 +2 -0.078 +0.00008 1 -3 +4 -4 +0.001 2 -3 +3 -3 
0 +1 -1 +1 +0.028 1 -2 +O -2 -0.172 +0.00131 i 2 -3 +4 -2 
0 +1 +O +O -0.310 +0.00017 1 -2 +O +O +0.002 -0.00002 2 -2 +O -2 
0 +1 +o +2 +0.002 1 -2 +1 -1 -0.006 +0.00005 ~ 2 -2 +2 -2 
0 +1 +1 +1 -0.028 +0.00002 1 -2 +2 -2 +1.684 -0.01392 ~ 2 -2 +4 -2 
0 +1 +2 +o -0.011 1 -2 +4 -2 -0.006 +0.00004 2 -1 +O +O 
0 +1 +2 +2 +0.002 1 -1 +O -2 +0.010 -0.00008 2 -1 +1 -1 
0 +2 -4 +2 +0.010 -0.00001 1 -1 +O +O +0.079 -0.00064 2 -1 +2 -2 
0 +2 -2 +o -0.002 1 -1 +1 -1 -0.070 +O.00058 2 -1 +2 +O 
0 +2 -2 +2 +0.040 -0.00074 1 -1 +2 -2 -0.060 +0.00051 2 -1 +3 -1 
0 +2 -1 +1 +0.008 1 -1 +2 +o +0.011 -0.00009 , 2 +o +o +o 
0 +2 +O +O -0.006 1 -1 -t3 -1 -0.001 +0.00001 1 2 +O +2 +O 
0 +2 +O +2 -0.476 +0.00037 1 -1 +4 -2 -0.001 +0.00001 2 +O +4 +O 
0 +2 +1 +1 -0.002 1 +O -2 +O -0.022 +O.OOO19 2 +1 +O +O 
0 +2 +2 +o + O . O O l  1 +o +o +o +0.00039 1 2 +1 +1 +1 
0 +2 +2 +2 +O.007 1 +O +2 -2 -0.004 +O.00003 I 2 +1 +2 +O 
0 +3 -2 +2 +0.009 -0.00009 1 +O +2 +O -1.861 +0.01628 2 +2 +O +2 
0 +3 -1 +3 -0.004 +0.00001 1 +O +4 +O +0.004 -0.00004 2 +2 +2 +2 
0 +3 +O +2 -0.054 +0.00006 1 +1 -1 +1 +0.001 -0.00001 ~ 3 -5 +4 -4 
0 +3 +1 +3 -0.001 1 +1 +O +O -0.058 +0.00054 3 -4 +4 -4 
0 +3 +2 +2 +O.o01 3 -3 +2 -2. 1 +1 +O +2 +0.002 -0.00002 ' 

0 +4 -2 +2 N.003 -0.00001 1 +1 +1 +1 +0.024 -0.00022 ~ 3 -3 +3 -3 

+4 +O +2 -0.004 1 +2 +O +O -0.002 +O.OOOO~ 3 -2 +4 -2 
+4 +o +4 -0.001 ' 1 +2 +O +2 -0.052 +0.00048 ~ 3 -1 +2 -2 

1 o +4 -2 +4 +O.002 -o.ooooi ~ 1 +i +2 +o -0.012 +O.oooii i 3 -3 +4 -2 
+4 -1 +3 3.0.001 ~ 1 +2 -2 +2 +0.001 -0.00001 I 3 -2 +2 -2 

+5 -2 I +4 +0.001 1 +2 +1 +1 +0.001 -0.00001 ~ 3 +O +2 +O 
-5 +2 -2 +0.001 -0.00001 1 +2 +2 +2 +0.010 -0.00009 3 +o +4 +o 
-4 +O -2 -0.002 +0.00001 1 +3 +O +2 -0.005 +0.00005 4 -5 +4 -4 

-4 +2 -4 +0.001 -0.00002 2 -5 +4 -4 +0.003 -0.00002 4 -2 +2 -2 
4 -2 +4 -2 

-4 +1 -3 -0.002 +0.00001 2 -5 +2 -2 +0.001 -0.00001 4 -4 +4 -4 

I -4 +2 -2 +0.021 -0.00016 , 2 -4 +2 -4 -0.001 
-3 +O -2 -0.024 +0.00017 ~ 2 -4 +2 -2 +0.009 -0.00011 1 

1 

no Fz V 

sin cos 

-0:OOl 
+0.015 -0.OOOlO 
+0.068 -0.00085 
-0.004 +0.00004 ~ 

-0.004 +0.00003 1 
-0.003 +0.00006 1 
+0.357 
-0.034 +O.00025 
+0.001 -0.00002 1 

-0*00461 I 
-0.001 +0.00003 I 
-0.011 +0.00014 

-0.00001 I 

+O .00003 
+0.001 

I -0.027 +0.00060 1 
+0.019 -0.00013 1 
-0.001 +O.00003 I 

-0.00001 1 
+0.002 -0.00002 1 
-0,001 +0.00002 1 
+0.002 -0.00002 
+0.002 -0.00002 
+0.008 -0.00008 
+0.004 -0.00008 

-0.00001 , 

+0.021 -0.00044 ' 
-0.001 +o.oooo1 

-0.010 +O.OOOO~ 1 
-0.001 +O.OOOO1 
-0.001 1 +0.00005 

-0.00001 
-0.00001 

+0.001 -0.00004 
-0.001 +O.ooooo I"""" 



Argument 
---- ---- A I  A2 A 3  A, A I  A 2  A 3  A 4  

g g ’  w w’  g g’  w ’  w ’  
cos sin sin cos 

Argument 

cos Sin sin cos 

+2 +o 
+2 +2 

+2 -2 

+2 +o 

0 +o +o +o 
0 +o +2 +o 
0 +1 -2 +o 
0 +1 -1 +1 

0 +1 +o +o 
0 +1 +o +2 

0 +1 +1 +1 

0 +1 +2 +o 
0 +2 -2 +2 

0 +2 +o , +o 

+0.00001 

+0.00001 

-0.00002 

+0.00002 

0 

0 

0 

0 

0 

0 

1 

1 

1 

1 1 -0.00001 

+2 

+2 

+3 

+3 

+3 

+4 

-3 

-3 

-3 

-2 

+O 

+2 

-2 

-1 

+O 

+O 

+O 

+1 

+2 

+O 

+2 

+2 

+2 

+3 

+2 

+2 

-2 

-3 

-2 

-2 

+0.23855 

+0.00163 

-0.00002 

+0.00001 

-0.00026 

-0.00004 

+0.00001 

+0.00017 

+0.00490 

-0.00002 

+o .00002 

-0.00001 

+o.00056 

+O .00004 

+0.00001 

-0.00001 

+0.00003 

+0.00004 

+o.97111 

-0.00264 +0.00028 -0.00039 

-0.00002 

-0.00010 +0.00001 -0.00001 

+0.00129 -0.00029 

+0.00024 -0.00006 +o.00006 

+0.00004 

-0.00001 

+0.00019 -0.00002 -0.00006 

+0.00004 -0.00001 

-0.00447 

+O .00003 

+o.o0001 

+O.00001 

-0.00050 

-0.00004 

+o .ooo 0 1 

-0 .oooo 1 

-0.00004 

+0.00010 

+0.00104 

+0.00011 

+0.00001 

-0.00002 

-0.00120 

-0.00014 

-0.00001 

1 -2 +2 -2 +0.00021 

1 -1 +o +o 
1 -1 +1 -1 

1 -1 +2 +o -0.00001 

1 +o +O +O +0.00005 

1 +O +2 +O -0.00019 

1 +1 +o +o 
1 +1 +1 +1 +0.00001 

1 +1 +2 +o -0.00001 

1 +2 +O +2 -0.00008 

+3 

-3 

-2 

-1 

+O 

+1 

+2 

-2 

+O 

-0.00024 +0.00005 -0.00005 

-0.00001 

+0.00002 

+0.00001 

-0.00017 +0.00004 -0.00001 

+0.00021 -0.00005 +0.00004 

-0.00001 

+0.00001 

+0.00007 -0.00001 +0.00002 

+0.00001 

+0.00005 

+0.00028 

-0.00001 

-0.00025 

-0.00001 

-0.00001 

+o.00002 

-0.00002 

-0.00001 

-0.00006 

+0.00006 

+o.o0001 

+0.00006 

-0.00006 



hl 
0 

Argument 

g g '  w w'  

I T Argument 
v T h o b  - 

sin cos cos 
g 

1 

1 
1 

0 +1 -2 +2 -0.00089 -0.00089 -0.00006 1 
0 +1 -1 +1 -0.00115 -0.00108 -0.00006 1 
0 +1 +O +O +0.00239 +0.00017 +0.00003 1 
0 +1 +O +2 +o.00012 +0.00018 1 
0 +1 +1 +1 -0.00048 +0.00048 +0.00002 1 
0 +1 +2 +O +o.00033 -0.00033 -0.00003 1 
0 +2 -4 +2 -0.00009 -0.00009 1 
0 +2 -2 +o +0.00001 +0.00001 1 
0 +2 -2 +2 +0.02435 +0.02431 +0.00141 1 
0 +2 -1 +1 -0.00008 -0.00008 1 
0 +2 -1 +3 +0.00001 +0.00001 1 
0 +2 +o +o +o.o0009 1 
0 +2 +o +2 -0.00127 -0.00350 -0.00038 1 
0 +2 +1 +1 -0.00003 +0.00003 1 
0 +2 +2 +o +0.00001 -0.00001 1 
0 +2 +2 +2 -0.00005 +0.00007 +0.00002 1 

-4 +3 -3 
-4 +4 -4 

g '  w w '  

0 +3 -3 +3 
0 +3 -2 +2 
0 +3 -1 +3 
0 +3 +o +2 
0 +4 -2 +2 
0 +4 -2 +4 
0 +4 -1 +3 ' 
0 +4 +o +2 

cos 

+o.00003 -0.00003 
-0.00002 ' +0.00002 

-0.00005 
+o.00267 
-0.00009 
-0 .OOO 15 
+O .00023 
-0.00005 
-0.00002 
-0.00001 

-3 

-0.00005 
+0.00267 
-0.00008 
-0.00042 
+0.00023 
-0.00006 
-0.00002 
-0.00003 

+O -2 -0.00014 -0.00012 

1 
+0.00015 1 

1 
-0.00004 1 
+0.00001 1 

1 
1 
1 

-2 +4 
-1 +o 
-1 +o 
-1 +1 
-1 +2 
-1 +2 
-1 +3 
+o -2 
+o +o 
+o +2 
+o +4 

-2 
-2 
+O 
-1 
-2 
+O 
-1 
+o 
+O 
+o 
+O 

+1 
+1 
+1 
+2 
+2 
+2 
+2 
+3 

+o +o 
+o +2 
+2 +o 
-2 +2 
+o +o 
+o +2 
+2 +2 
+o +2 

+o.00004 
+0.00001 
-0.0001 7 
+o .00001 
+O .00041 
-0.00011 
+o .00001 
-0.00001 
-0.00242 
-0.00164 
+0.00001 
-0.00016 
+o .oo 0 0 1 
-0.00011 
-0.00005 
-0.00001 
-0.00046 
-0.00004 
-0.00007 

-0.00004 
+0.00002 
-0.00020 

-0.00042 
+0.00011 
-0.00001 
-0.00001 
-0.00231 
+0.00169 
-0.00001 
-0.00016 
+0.00001 
+0.00011 
-0.00005 
-0.00001 
-0.00045 
+0.00004 
-0.00007 

2 
-0.00005 2 

2 
+0.00034 2 
-0.00001 2 

2 

::: -2 +4 

-1 , +2 
-1 +2 

2 -1 +3 
-0.00026 2 +O +O 

2 +o +2 
+0.00188 2 +l +O 

n 
L 

2 
+0.00002 3 
-0.00002 3 
-0.00003 3 
+0.00001 3 

n 
6 

3 
+0.00022 3 
+0.00017 3 

3 

+1 
+2 
-4 
-4 
-4 
-3 
-3 
-2 
-2 
-2 
-1 

+2 
+O 
4-2 
+2 
+4 
+2 
+3 
+O 
+2 
+4 
+2 

+0.00001 3 -1 +2 
3 +o +o 

+0.00001 3 +o +2 
3 +1 +2 
4 -5 +4 

+0.00002 4 -4 +4 
4 -3 +2 
4 -3 +3 

- 
w ' 

-3 
-2 
-2 
-2 
+O 
-2 
+O 
-1 
+O 
+O 
+O 
+O 
+2 
-4 
-2 
-4 
-2 
-3 
-2 
-2 
-2 
-2 
+o 
+O 
+o 
i o  
-4 
-4 
-2 
-3 

- 

Y 
sin 

-0.00012 
+0.00013 
-0.00147 
+0.00003 
-0.00002 
+0.00003 

-0.00002 
-0.00019 

-0.00001 
-0.oooi3 

-0.00002 
+0.00001 
+0.00003 
-0.00001 
+0.00027 
-0.00002 

T 
cos 

+O .00013 
+0.00014 
-C.00029 
-0.00003 
-0 .ooo 02 

holh 
cos 

+0.00002 
-0.00001 
-0.00247 

+0.00007 
-0.00001 

+0.00002 
-0.00020 

-0.00001 

-0.00002 
+0.00001 
+0.00003 

-0.00026 

-0.00001 

-0.00002 
+0.00028 -0.00003 

-0.00002 
+0.00002 +0.00002 
+0.00151 +0.00158 -0.00018 

+0.00002 +0.00001 
-0.00005 -0.00005 
+0.00001 +0.00001 
-0.00002 -0.00002 
+0.00016 +0.00017 -0.00001 
+0.00001 +0.00001 
+0.00001 +0.00001 
+0.00003 +0.00003 
+0.00005 +0.00005 
+o.o0001 +0.00001 

0 +4 +o +4 +0.00001 2 -5 +4 -4 -0.00001 +0.00001 4 -2 +2 -2 +0.00026 +0.00027 -0.00001 
0 +5 -2 +2 +0.00001 +0.00001 2 -4 +2 -4 -0.00001 4 -2 +4 -2 -0.00003 -0.00003 
0 +5 -2 +4 -0.00001 -0.00001 2 -4 +2 -2 -0.00003 -0.00005 4 -1 +2 -2 -0.00001 -0.00001 

2 -4 +3 -3 -0.00003 +0.00003 4 +o +2 +o +o.00002 +o.00002 1 -5 +2 -2 -0.00004 +0.00004 
1 -4 +o -2 -0.00001 -0.00001 2 -4 +4 -4 -0.00005 +0.00005 5 -4 +4 -4 +o.o0001 +0.00001 

2 -3 +o -2 +0.00002 +0.00002 5 -2 +2 -2 +0.00003 +0.00003 1 -4 +2 -4 -0.00001 
1 -4 +2 -2 1 -0.00038 +0.00039 +0.00004, 2 -3 +2 -2 -0.00026 -0.00004 -0.00044 



CONCLUSION 

It has'been shown that electronic data processing machines can be used to automatize the pro- 
duction of semi-analytical theories of the "natural" satellites. The theory of motion of the Xth  
satellite of Jupiter as  given in this article represents the solution of the so-called "main problem." 
The direct solar effects were expanded under the assumption that the heliocentric motion of Jupiter 
is Keplerian. We are  justified in such an approach because the solar perturbations are  undoubtedly 
strongly dominant in the motion of Jupiter X. This can be seen from the fact that the new set of 
elements leads to a considerably better representation than the old one. The difference between 
the observed and the computed positions is now reduced to only a few seconds of arc. However, to 
make the theory more complete, several other secondary small effects must also be considered. 
We have still to include in the theory the direct planetary influence as well as the influence of the 
variability of the elements of Jupiter on the motion of the satellite. We expect these effects to 
change the difference between the observed and the computed position slightly, about 1" - 2". 

The comparison between the theory of Hansen and that of Delaunay also is a topic of consider- 
able theoretical and numerical importance. The authors plan to expand and to discuss these prob- 
lems in their next paper. 
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